ВАК 25.00.30 Метеорология, климатология, агрометеорология
УДК 60 Прикладные науки. Общие вопросы
ГРНТИ 27.35 Математические модели естественных наук и технических наук. Уравнения математической физики
ГРНТИ 37.21 Метеорология
ГРНТИ 37.23 Климатология
ГРНТИ 82.29 Прогнозирование. Футурология
ОКСО 01.04.03 Механика и математическое моделирование
ОКСО 01.03.03 Механика и математическое моделирование
ОКСО 02.03.03 Механика и математическое моделирование
ОКСО 03.03.03 Механика и математическое моделирование
ОКСО 05.02.03 Метеорология
ББК 6523 Планирование. Экономическое прогнозирование
ТБК 6154 Математическое моделирование
ТБК 6348 Метеорология. Климатология
BISAC SCI042000 Earth Sciences / Meteorology & Climatology
BISAC SCI092000 Global Warming & Climate Change
В статье изучается влияние изменений климата на среднегодовую температуру воздуха (MAAT) в провинции Хузестан в Иране на основе моделей изменения климата (АОМОЦ). Семь моделей из четвертого аналитического доклада Межправительственной группы экспертов Организации Объединенных Наций по изменению климата (АД4 АОМОЦ, включая HADCM3, CNRMCM3, CSIROMK3.0, GFDLCM2.0, INMCM3.0, IPSLCM4 и BCM2.0) использовалось для прогнозирования температуры воздуха в будущем (2040–2069 гг.) в соответствии с сценариями уменьшения/увеличения выбросов A2, B1 и A1B и температурами наблюдаемого периода (1982–2011 гг.). Для масштабирования данных АОМОЦ использовалась модель LARS-WG. Исследование среднегодовой температуры воздуха на 9 выбранных станциях в период с 1982 по 2011 г. показало тенденцию нарастания тренда температурной кривой на всех станциях. Максимальные и минимальные изменения произошли по сценарию А2 на станциях Шахид Аббаспур и Дезфул на 2,1 °С и по сценарию В1 на станции Абадан – на 1,3 °С, по сценарию A1B также на станции Абадан – на 1,9 °С. Пространственный анализ среднегодовой температуры в рамках двух сценариев выбросов парниковых газов для всей провинции Хузестан показал увеличение изменений температуры воздуха с северо-запада на юго-восток исследуемой области. Результаты также показали, что в атмосферных и океанических моделях общей циркуляции (МОЦ) имеется большое количество неопределенностей, которые необходимо учитывать при моделировании различных сценариев выбросов парниковых газов.
изменения климата, температура воздуха, модели AOGCM, провинция Хузестан
1. Ashofte P. and MassahBavani A.R., 2009. Uncertainty of Climate Change Impact on the Flood Regime Case Study: Aidoghmoush Basin, East Azerbaijan, Iran, in Persian. Iran-Water Resources Research. Volume 5, No. 2 p. 27-3.
2. Barnett T., Malone R., Pennell W., Stammer D., Semtner B., Washington W., 2004. The effects of climate change on water resources in the west: introduction and overview. Climatic Change 62, 1e11.
3. Cai Y.P., Huang G.H., Tan Q., Chen B., 2011. Identification of optimal strategies for improving eco-resilience to floods in ecologically vulnerable regions of a wetland. Ecological Modelling 222, 360e369.
4. Chenoweth J., Hadjinicolaou P., Bruggeman A., Lelieveld J., Levin Z., Lange M.A., Xoplaki E., Hadjikakou M., 2011. Impact of climate change on the water re-sources of the eastern Mediterranean and Middle East region: modeled 21st century changes and implications. Water Resources Research 47. http:// dx.doi.org/10.1029/2010WR010269.
5. Chen B., Chao W.C., Liu X., 2003. Enhanced climatic warming in the Tibetan Plateau due to doubling CO2: a model study. Climate Dynamics 20, 401e413.
6. Cook E.R., Woodhouse C.A., Eakin, C.M., Meko D.M., Stahle D.W., 2004. Long-term aridity changes in the western United States. Science 306, 1015-1018.
7. Dai A.G., 2011. Drought under global warming: a review. Wiley Interdisciplinary Reviews-Climate Change 2 (1), 45e65.
8. Evangelista P., Young N., Burnet, J., 2013. How will climate change spatially affect agriculture production in Ethiopia? Case studies of important cereal crops. Climatic Change 119, 855e873.
9. Goodarzi A., MassahBavani A.R, Dastorani M.T. and Talebi A., 2014. Evaluating effect of downscaling methods; change-factor and LARS-WG on surface runoff A case study of Azam-Herat River basin, Iran. Desert Journal, In persian, In press.
10. Hatfield J.L., Boote K.J., Kimball B.A., Ziska L.H., Izaurralde R.C., Ort D., Thomson A.M., Wolfe D., 2011 Climate impacts on Agriculture: implications for crop production. Agronomy Journal 103 (2), 351e370.
11. IPCC, 2000. A Special Report of IPCC Working Group III. Summary for Policymakers Emissions Scenarios. P. 4-5.
12. IPCC, 2007a. Climate Change 2007: Impacts, adaptation and vulnerability. In: Parry M.L., Canziani O.F., Palutikof J.P., van der Linden P.J., Hanson C.E. (Eds.), Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press,Cambridge, United Kingdom; New York, NY, USA.
13. IPCC, 2007b. Climate change 2007: the physical science basis. In: Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M., Miller H.L. (Eds.),Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
14. IPCC, 2007c. Climate change 2007: impacts, adaptation and vulnerability. In: Contribution of the Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.
15. Kamal A. R.1 and MassahBavani A.R., 2012. Comparison of future uncertainty of AOGCM-TAR and AOGCM-AR4 models in the projection of runoff basin. Journal of Earth and Space Physics in Persian. 38(3), p. 175-188.
16. Li L., Ngongondo C.S., Xu C.-Y., Gong L., in press. Comparison of the global TRMM and WFD precipitation datasets in driving a large-scale hydrological model in Southern Africa. Hydrol. Res. http://dx.doi.org/10.2166/nh.2012.175.
17. Renner M., Bernhofer C., 2011. Long term variability of the annual hydrological regime and sensitivity to temperature phase shifts in Saxony / Germany. Hydrology and Earth System Sciences 15, 1819e1833.
18. Racsko P., Szeidl L. and Semenov M., 1991. A serial approach tolocal stochastic weather models. Ecol Model 57:27-41.
19. Semenov M.A., Brooks R.J., Barrow E.M., Richardson C.W., 1998. Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates. Clim Res Vol. 10: 95-107.
20. Semenov M.A., 2007. Development of high-resolution UKCIP02-based climate change scenarios in the UK. Agric for Meteorol 144:127-138.
21. Semenov M.A., 2008a. Extreme impacts of climate change on wheat in England and Wales. Asp Appl Biol 88:37-38.
22. Tavangar Sh., Moradi H., MassahBavani A.R., and Azari M., 2013. Changes in maximum and minimum temperatures in the Gorganroud basin for the period 2030-2011 using HadCM3 and downscaling LARS-WG models, Second International Conference on Modeling, plants, water, soil and air, Kerman, Iran. 18 and 19 May.
23. Tan Q., Huang G.H., Cai Y.P., 2011. Radial interval chance-constrained programming for agricultural non-point source water pollution control under uncertainty. Agricultural Water Management 98 (10), 1595e1606.
24. Thompson J.R., 2012. Modelling the impacts of climate change on uplandcatchments in southwest Scotland using MIKE SHE and the UKCP09probabilistic projections. Hydrol. Res. 43 (4), 507-530.